3348a

1 9 APR 2000

Development of Numerical Constitutive Models for Carbon-Carbon Composites
F49620-94-1-0259,P00002
John Whitcomb

Center for Mechanics of Composites
Texas A & M University
«Fin&l Report
May 15, 1994 - August 31, 1998

Objective -
Predict the stiffness and strength of oxidation-resistant carbon-carbon subjected to thermal

and mechanical loads in an oxidizing environment

Status of effort
A three-dimensional progressive failure analysis of carbon-carbon composites was

developed. To facilitate the study, various mesh generators and graphical pre- and post-
processing tools were developed. These tools were used to study carbon-carbon during cool-
down from processing temperature and subsequent mechanical loads. This grant was tightly
integrated with the AASERT grant F49620-93-1-0471, which ended last year. The student

* supported under the AASERT grant, Clint Chapman, has graduated (and is employed) with a
Ph.D. This final year of the subject grant has been invested in documenting our efforts in the open
literature and assembling documentation for the tools developed by Dr. Chapman so they could be
used in subsequent projects.

Accomplishments
Two of the biggest challenges in the analysis of textile composites is developing a valid 3D

finite element mesh and deriving boundary conditions for the smallest possible analysis region
(since the computational challenge is inherently high). We can now obtain meshes and boundary
conditions for plain and 8 harness satin weaves with a wide range of waviness, tow cross-section,
and mesh refinement. Only a few parameters have to be specified...the rest is automatic. We have
also enhanced our visualization programs and associated utilities so that it is much more
convenient to examine stress and strain distributions, deformed geometries, damage distribution,

and differences between models.

We have continued to document our efforts in the literature. The results of our
simulations were presented at ICCE/5 in July, 1998. A journal paper describing the simulations is
almost complete. The title is “Thermally Induced Damage Initiation and Growth in Carbon-
Carbon Composites.” Another paper, “Derivation of Boundary Conditions for Micromechanics
Analyses of Plain and Satin Weave Composites,” has already been submitted to the Journal of
Composite Materials. The new techniques developed in this paper greatly simplify the challenge
of deriving boundary conditions. Reports from previous years of this grant include copies of
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Derivation of Boundary Conditions for Micromechanics Analyses of Plain and Satin Weave
Composites
John D. Whitcomb
Clinton D. Chapman
Xiaodong Tang

Abstract
Efficient 3D analysis of periodic structures depends on identifying the smallest region to

be modeled and the appropriate boundary conditions. This paper describes systematic procedures
for deriving the boundary conditions for general periodic structures. These procedures are then

used to derive the boundary conditions for plain and satin weave composites.

Introduction
Composite materials consist of a combination of materials, often fibers and matrix. The

basic challenge of micromechanics is to determine how the properties and spatial distribution of
the constituents affect the overall material response. The overall response is often characterized

. in terms of the effective engineering properties, such as extensional moduli and Poisson's ratio.
These are also referred to as the homogenized engineering properties. To obtain these properties
a representative volume element (RVE) or unit cell is identified that includes all characteristics
of the composite. The literature includes a wide variety of analys;es for various unit cells. For
example, some of the recent numerical studies have focused on hexagonal and square arrays of
fibers in matrix [1-4], spherical inclusions in matrix [5], and textile composites [6-13]. The latter
configuration, textile composites, presents a severe challenge to the analyst because of the
geometric complexity. Although a variety of analyses exist, including some very detailed three-
dimensional finite element analyses [7-13], there has not been a systematic description of how
one obtains the boundary conditions to perform the analysis of textile composites. Reference [14]
gives an excellent discussion of exploiting symmetry in general. However, the reference does
‘not consider periodicity explicitly or composites. Accordingly, the goal of this paper is to present
a systematic procedure for deriving the boundary conditions for both full unit cell and partial unit

cell analyses of plain and satin weave composites.
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Background
Implicit in micromechanics analyses is that a small region of the microstructure fully

represents the behavior of a much larger region (usually an infinite domain). There is no standard
definition of this region in the literature. Herein, the term "unit cell" is defined to mean the |
smallest region that Ar'epresents the behavior of the larger region without any mirroring or rotation
transformations. For such a region to exist there must be a basic pattern (of geometry and
response, such as strains, stresses, etc.) that is repeated periodically throughout a domain. In
particular, the larger region can be synthesized by replication and translation of the unit cell in
the three coordinate directions. Figure 1 shows examples of periodic microstructure. In each
case, the region is built from a single building block or unit cell. Note that there can be more than

one definition of the unit cell for a single microstructure (e.g. case (a) in Figure 1).

To determine effective engineering properties, the periodic array is subjected to a series
of loads consisting of either macroscopically constant strain or stress. The term macroscopically
constant indicates that the volume averaged strain for every unit cell is identical. (The same can
~ be said for the stresses.) Although one cannot analyze an infinite number of unit cells, it is

possible to derive boundary conditions for a single unit cell that will make it behave as though it

is buried within an infinite array. How this is done will be described herein.

It is convenient to think of the challenge as consisting of two parts. The first part consists
of identifying the appropriate boundary conditions for a single full unit cell. The second
challenge is to exploit the symmetries in the microstructure of the unit cell and the loading to

reduce the analysis region to just a fraction of the full cell in order to reduce the computational

costs.

Derivation of basic equations
The derivation of the boundary conditions is based on two conditions. The first is
_periodicity and the second is equivalence of coordinate system. It should be noted that that these
concepts can be combined, but the authors choose not to do so. The periodic conditions state

that the displacements in the various unit cells differ only by constant offsets that depend on the
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volume averaged displacement gradients. Further, the strains and stresses are identical in all of

the unit cells. This can be expressed as

u.,(x‘x +d,)= ui(xa) + <§—:j>dﬁ

£,(x, +d,)=£,(x,) o )

oy(x,+d,)= o(x.)

where dj, is a vector of periodicity. This vector is a vector from a point in one unit cell to an

equivalent point in another unit cell.

These conditions are sufficient for deriving the boundary conditions for the full unit cell.
However, it is usually desirable to exploit symmetries in order to 'be able to analyze a smaller
region. The concept of "Equivalent Coordinate Systems" (ECS) is useful in identifying the
symmetries and constraint conditions. Coordinate systems are equivalent if the geometry, spatial
distribution of material, loading, and the various fields that describe the response (e.g.

displacement, strains, etc.) are identical in the two systems.

For example, x, and ¥, are equivalent coordinate systems if

#(%,)=u(x,)
Eij(fa) = 5:)‘("«:) .
Eq(fa) =0y (xa) ()

etc.
A visual technique for determining whether a new coordinate system is equivalent is to draw it
on a three-dimensional view of the body. This view should include the load vectors and a
description of the spatial variation of the material properties. If the body can be rotated (i.e. the
view changed) such that the new view and new coordinate system look identical to the original

view and coordinate system, the coordinate system is equivalent.

Exploiting equivalent coordinate systems requires identification of coordinate transformations

that provide useful constraint conditions. Consider the equivalent coordinate system ¥;as a
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potentially useful ECS. Define: a; = direction cosines for transformation from the original (x,)
to the equivalent (&) coordinate system....i.e. X, =a;x;

#(%,)=au,(%,)

E(%)=ntpEn(T) | ®)

oy(%.) = 2,0 ,(%.)
Combine equations (2) and (3) to give

u,(x,)=aulx,)

&(%2) = ,0,6,,(%,) “

o-ij (xa) = aimajno-mn(fa)

Finally, replace ¥, with a,, x, so that everything is now expressed in terms of a single

coordinate system.
u(x,) =a;u(a %))
81)' (xa) = aimajngmn(aq' xj) (5)

Oy (xa) = Qi O pin (aaj x/)

Sometimes it is necessary to switch the sign of all of the loads to make the two coordinate
syétems equivalent. Iftension and compression propérties are different, one must not switch the

sign of the load to obtain an equivalent coordinate system.

To genéralize equations (5), a factor y is introduced.
| 7 =1 if load reversal is not required
y =—1 if load reversal is required
Equation (5) then becomes
u(x,) =7 au,(a; %))
&,(%s) =7 4,8,6 0,25 X;) )

o'y' (xa) = 7 aimajno-mn (aq' x #i )
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The constraints that are implied by equations (6) are very useful in deriving the required

boundary conditions. This will be demonstrated later through examples.

. The value of the factor y is easily determined from the loading, since only simple loading |

is considered. In particular, the model is subjected to either macroscopically constant strain or

stress. For example, one might specify a volume-averaged value of o, (with the other volume-
averaged stresses=0). The sign of ¥ can be obtained by examining the effect of the coordinate
transformation on the sign of o,,. Infact, we can consider all six load cases at once. For

example, if the coordinate transformation is mirroring about the x, =0 plane,

-1 0 0 o, —0,, —04
a,=[0 1 0| whichgives a,a,0,,=l-0, o0, o0,
0 01 —0); Opn Oy

Accordingly, the values of y are as follows for the six different load conditions for mirroring
about the x, =0 plane.

Stress o, 0, O3 O, OC; O
y 1 1 1 -1 1 -l
The values of y for six different coordinate transformations and the six load cases are

summarized in Table 1 below. The values of y for specified strains &; or displacement gradients

Ou, .
—~ are the same as for stress loading.
i}

Table 1 Values of y for various transformations and load cases.

Transformation Load Case
Oy O O3 O Oy O3

Mirror aboutx1=0
Mirror about x2 =0
Mirror about x3=0
mrrotation about x1
mrrotation about x2

bd ket ek fd
el b ek pd b e
e T e T o S W O

'

asry

[om—y

]

P

zrotation about x3




8/19/98 - C:\whit_Rest\Paper&\BC_forWeave\weaveBC__}.doc 6

The values of 7 also indicate what types of loading can exist for a particular type of equivalent
coordinate system. For example, for mirroring about the x, axis one cannot impose non-zero
volume averaged values of both £, and &,, at the same time ... the symmetries are
incompatible since they require different values of y . Furthermore, if one imposes a non-

zero(s,, ) and retains the other strains as unknowns to be determined as part of the solution,

(&, )and (&,;)must be found to be zero.

Boundary conditions for symmetrically stacked plain weave

If one is willing to analyze the entire unit cell, the periodic conditions for the
displacements can be used to specify the boundary conditions. However, to reduce the region to
be analyzed requires a bit more effort. The following describes a systematic way to go about
accomplishing this task. Although the focus is on the plain weave, the techniques are quite
general. Figure 2a is a unit cell for a symmetrically stacked plain weave composite. As can be

seen from the figure, the planes x; = 0 are planes of geometric symmetry.

The first step will be to develop relationships for the planes x; = *a. (vector of periodicity
d_ =[2a,0,0]) Substituting x, =-a into the periodic relations gives

u,(a,x,,%3) = u,(—a, x,,x3)+ <§u-‘->2a
oy

gg'(a, X;,%3) = €;(—a, X3,%3) . (7

O',:’-(a, X2, x3) = ay(—a: x2’x3)

Consider the equivalent coordinate system (ECS) x. that is obtained by mirroring about x, =0.

The direction cosines for this transformation are

-1 00
a,={0 10 ®)
0 01

Substituting the a;; above into equations (6) yields the following'rélationships for displacements

and stresses,
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U -4
U, =7 %
Uloxxy L Jeaxx
oy O Op Oy —012 —O0p
Op2 922 Op =|=012 O On €)
O3 05 O3la4ma L7913 928 933 ) anam

Tractions will transform like the displacements and strains like the stresses, so the details are not
shown. These periodic and ECS conditions will now be combined ... first for displacements and

then for the stresses.

Displacements
Combining the constraints in equations (7) and (9) yields:

~ <@l—>-
u, + <§2- 2a=y| u, (10)
l .
“ (—a:xz,xa) <§u_§_> U (-a,xz,x3)
f [\0%1/ ]

Rearranging, yields

/'\1
Edh
\/'

u(l+y)
u(1-7) = -
us(l - }') (—a:xz’xa)

03))

—
TR
~——
Y

l/\
gk
1\/

Recall that the value of y depends on whether the loads must be reversed for the new coordinate
system to be equivalent. The constraints indicated by equation (11) are listed below. The ones
that provide useful information are boxed. The remaining constraints are not useful for

performing the analysis, but they can be used for evaluating the results.
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ou \ _ -
B

This can be expressed quite succinctly as follows

e If y =1, normal displacements on x =-a are equal. Because of periodicity, the normal
dispiacements onx =a are also equal and opposite those onx; = -a.

e If y =—1, tangential displacements are constant in each direction on x, = —a. Because of
periodicity, the tangential displacements in each direction on x; = a are also equal and

‘opposite the corresponding displacements onx, = —a.

Stresses

Now consider the constraints on the stresses. Combine equations (7) and (9) to obtain the

following useful relations (the remainder are trivially satisfied or do not affect the boundary

conditions.)

r=1 o,(ta,x,x)=0 os(ta,x,,x,)=0

y=-L o,(ta,x,x)=0

(13)

These can be summarized as follows (using Cauchy's stress formula, 7, = o ;1)

e If y=1 sheartraction on x, = *a is zero
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e If y=-1 normal traction on x, = *a is zero

Because of the symmetries in the microstructure, we will obtain analogous results for

x, =+a and x; =+¢. Thatis, on these planes

e Ify =1, normal displacements are equal, and shear tractions are zero.

e Ify=-1, tangential displacements are equal, and normal tractions are zero.

Next we proceed to exploit symmetries within the cell to reduce the region which must be
modeled. Again, we will consider an ECS obtained by mirroring about the x, =0 plane.

However, this time we examine the displacements, etc., along the plane x, =0. Equations (6)

become
L} 1% Oy O Oy On ~0, —Op
U =7 % and |0y, 0, Oy =¥|"%2 ©On Opn (14)
U (0.23,x3) U (0.x3,%) %13 9z T3 (0,x2.%3) %1 O O3 (0.x;.3;)

Therefore, on x; = 0 we have the following constraints

y= 1 ) Y= -1
normal displacement = 0 tangential displacements = 0 (15)
tangential tractions =0 normal tractions =0

If we repeat this exercise for the planes x, =0 and x; =0 (which are also planes of

microstructural symmetry), we will obtain analogous results. We are now down to 1/8 of the
original unit cell (Figure 2(b)). The analysis region can be reduced to 1/32 of the unit cell. To
simplify the derivation of the boundary conditions for the 1/32 unit cell, the coordinate system

origin is shifted to the center of the 1/8 unit cell (Figure 2(c)).

Consider a rotation about the x, axis of 180° to obtain an ECS.
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1 0 O
a;=|0 -1 0 (16)
0 0 -1

The periodic conditions in equation (6) yield (specialized for x, =0).

U L
u, =y| %
L (%1.0,x3) U (x;.0.-x3)
Oy O Op O,y —O0 —O0p
O,y O On =|—0), Opn Oxn|. 17

Oun On Onliox L7993 913 I3 lg o

The results in the following displacement constraints

y=1 y=-1
u,(x,,0,x;) =% (x,,0,-x;) #,(x,,0,%x3) = -2, (x,,0,-x;)
u,(%,,0,%,) = —11,(x,,0,-x;) u,(x,,0,%;,) = u,(x,,0,—x;) (18)
" uy(%,,0,%;) = —14;(x;,0,-x;) u,(x,,0,x;) = 4;(x,,0,—x,)

Note that constraints are derived for all three-displacement components. Hence, traction

boundary conditions do not have to be considered. Now one can replace the region x, >0 with

these constraints. The analysis region is now 1/16 of the unit cell.

Now consider a rotation about the x, axis of 180° to obtain an ECS and specialize equation (6)

for the plane x, =0.

-1 0 O
g;={0 1 0 | (19)
0 0 -1
The result is
u, -u,
u, =Y %
u3 (0.x3.x3) —u3 (0,x;,~x3)
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Oy O, Oy Oy —0n Op
Op On Op =Y|=6un O ~Oxn (20)
O3 On Onlg.x O "9 93 o
This results in the following displacem'ent.constraints
y=1 y=-1
4,(0,%,,%;) =—%(0,x;,-x;) ,(0,x,,%;) =4/(0,x,,—x;)
4,(0,x,,%;) =u,(0,x,,~x,) u,(0,x,,x,) = —1,(0,x,,—x,) 21
4,(0,x,,%;) = —1,(0,x,,~x;) 4,(0,x,,x;) =1, (0,x,,—x;)

Again, one obtains constraints for all three-displacement components. Hence, the region x, >0

can be reduced with these constraints, leaving an analysis region of only 1/32 of the unit cell.

Table 2 summarizes the boundary conditions for symmetricalbly and simply stacked plain

weaves under extension, o,, (or &,,) shear, and o, (or &,;) shear load conditions.

- Boundary conditions for satin weave
The boundary conditions for a simply stacked 8-harness satin weave (Figure 3) will be
derived in this section. Modifications for a symmetrically stacked satin weave are also given. If
the entire unit cell is to be analyzed, the periodic conditions given in equation (1) are sufficient.
The vectors of periodicity to be used in equation (1) are [3a,-3,0], [22,2a,0], [-2,33,0], [0,0,t].
However, it is possible to analyze half of the unit cell if both the periodicity and aﬁ equivalent
coordinate system are exploited. The half-cell that will eventually be used is shown in Figure
3(b). The equivalent coordinate system to be used is obtained by a rotation of 7z about the x,axis.
For such a transformation equation (6) gives the following constraints for the full unit cell.
(%), %, %3) == (=x,,7%,,%;)
Uy (%,, %5, %) = =0, (—%,,-%,, %) ) (22)
uy(x,, %5, %;) = s (—x,,—x,,%;)
Boundary conditions for the plane x, =0 can be obtained immediately by substituting

x, = 0 into equation (22). Equation (22) will also be useful later as each pair of faces of the unit
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cell is considered. Suitable constraints must be derived for the other faces in order to reduce the

analysis region to one-half of the unit cell.

~

Faces x, = _._..Z
The vector of periodicity that connects these faces is d, =[3a,-a,0]. Substitution of this

vector into equation (1) gives

38 o Ve CANNLAN
u,.(z,x,l a,x,)—ui( 2,x2,x3)+3a<ax|> a<ax2>, i=123 (23)

where —2< X, _3‘1.
2 2

The constraints in equation (23) are used to specify the boundary conditions for the shaded
regions in Figure 4(a).

Combining equation (22) and (23), gives boundary conditions for the face x, = 3—2a-as

u,(Ba X, —a x,) =—py (_3_a_ —X, x,)+ 3a<9ﬂ>- a<§y—‘->
‘ 2 ox, ox,

foilows:

2

3 3 0 0
u, (—5‘1, x, —a, x3) = -, (—23 =X, x3) + 3a<—az—j> — a<5xu—:> (24)
u(_:s’g x. —ax)=7u(§-q-—x x)+3a —Q-ui —-a é—”—’-
32’2 273 32’ 2>73 axl axz

a _3a ' . . . .
where Y <x, < ER Note that these constraints only involve points on the planex, = %{.

Equation (24) is used to specify the boundary conditions for the points specified by 0<x, <a in

equation (24). (shaded region in Figure 4(b).).

Faces x, +x, =32a (beveled edges)

The vector of periodicity that connects these faces is d, =[2a,24,0]. Substitution of this

vector into equation (1) gives
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Jy du, .
u,(—x,, %, +2a,%,) =u(—x, -2a xz,x,)+2a<axl>+2 <6x2>’ i=123

(25)

Combining equation (25) and the equivalent coordinate system (22) gives the following
boundary conditions for face 5:, +x, =—2a.

—y,(xy,—x, —2a,%;) =1 (—x, - 2a xz,x3)+2a<gu >+2a<au >

ox,
—(x,,—x, —2a,%,) =u,(-x, - 2a xz,x3)+2a<alz>+2a<§ﬁ> (26)
ox, ox,
w5 (%%, —20,%,) = u,(~x, —2a,%,,%,) + 2a( == 9\ 1 2a( 2
a ax,

where Y <x, < —g. The constraints in equation (26) only involve points on the plane

x, +x, =—2a. This can be verified by observing that the coordinates satisfy the condition

x, +x, =—2a. Similar boundary conditions can also be obtained for face x,+x,=2a, but they are

_ not needed for the half unit cell.

3
Faces x, = i—;—

The vector of periodicity that connects these faces is d, =[~a,3a,0]. Substitution of this

vector into equation (1) gives

ui(xl!BZ_a’xSJ = ui(xl ’_gég':x3) <gui >+3 <g:i >’ i= 1:253 (27)
2 .

Combining equation (27) and the equivalent coordinate system (22) gives the following

boundary conditions for face x, = _%a_
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nh| =% T % [T RN T ax axz |
3a 3a d du,

_wz(—xl + a,——z—,x,) = uz(xl :_7,x3)_a< auz >+ 3a< o, > (28)

“(_x +a__33'x)_;,(x _Ee.x)' o\, fow

nhs| =X, Il ] e R axl ox,

where —=< x, < EZ_ Similar boundary conditions can alse be obtained for face x;=32/2, but

they are not needed herein.

t
Faces x, = +—
2
The vector of periodicity that connects these faces is d, =[0,0,¢]. Substitution of this

vector into equation (1) gives
t t ou,\ .
»ui(xl:xz"z—)-:ui(xhxb 2)+’<ax3 >: 1= 1:2’3 - (29)

Up to this point the boundary conditions described have been valid for both simple and
symmetric stacking except equation (29) is valid for simple stacking only. For symmetric

. . t )
stacking, the boundary conditions on x; = iE are the same as for the symmetrically stacked

plain weave discussed earlier, that is

e Ify =1, normal displacements are equal, and shear tractions are zero.

e Ify =-1, tangential displacements are equal, and normal tractions are zero.

Comments on boundary conditions

Earlier in the discussion of Table 1 it was mentioned that certain macroscopic modes of
deformation are incompatible when transformations are used to reduce the analysis region to less
than the full unit cell. Although all the macroscopic displacement gradients were listed in the
boundary conditions, whenever a particular load case is considered, many of the gradients must

be zero. Also, it is necessary to eliminate rigid body motion of the model. Rigid body
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translations are prevented by constraining a single point in all three coordinate directions. Rigid

body rotations are prevented by imposing

aui_ _ auj . .
<a_x;>—<axi> f0r1¢_].

This causes no loss of generality in the modes of deformation. The simplified bound@

conditions for simply and symmetrically stacked 8-harness satin weaves are summarized in

Table 3.

As listed, specifying the magnitude of the displacement gradients specifies the magnitude
of the load. If one specifies one displacement gradient to be non-zero and the rest to be zero, then
obviously there is only one non-zero volume averaged strain, but there are generally several non-
zero volume averaged stresses. Conversely, if one displacement gradient is specified and the rest

are determined as part of the solution, there will generally be several volume averaged strains,

but only one volume averaged stress.

Conclusions v
A systematic procedure was developed for deriving boundary conditions for partial unit

cell models of materials with periodic microstructure. The procedure combines the concepts of
periodicity and equivalent coordinate systems. Boundary conditions were derived for simply and

symmetrically stacked plain and 8-harness satin weave composites for various types of

macroscopic loads.
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Unit cells

(a) Hexagonal array of fibers in matrix

Unit cell

(b) Simply stacked plain weave
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Figure 1. Examples of peri




() Full unit cell (b) 1/8 unit cell considered (shown

cut from full unit cell)

X; New coordinate system -

(c) New coordinate system (d) 1/32 unit cell

Figure 2 Coordinate systems and regions used in derivation of
boundary conditions for symmetrically stacked plain weave




(a) Full unit cell (b) 2 unit cell considered

Figure 3 Coordinate system and regions used in derivation of
boundary conditions for simply stacked 8-harness satin weave

(b) Region where boundary conditions are |
based on both periodic and equivalent
coordinate system constraints.

(a) Regions where boundary conditions
are based on periodic condtions.

Figure 4 Paired regions for multipoint constraints.




